3.1256 \(\int x (d+e x^2)^2 (a+b \tan ^{-1}(c x))^2 \, dx\)

Optimal. Leaf size=380 \[ \frac{d^2 \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^2}+\frac{a b d e x}{c^3}-\frac{d e \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^4}+\frac{b e^2 x^3 \left (a+b \tan ^{-1}(c x)\right )}{9 c^3}-\frac{a b e^2 x}{3 c^5}+\frac{e^2 \left (a+b \tan ^{-1}(c x)\right )^2}{6 c^6}+\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{a b d^2 x}{c}+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{b d e x^3 \left (a+b \tan ^{-1}(c x)\right )}{3 c}+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{b e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )}{15 c}+\frac{b^2 d^2 \log \left (c^2 x^2+1\right )}{2 c^2}+\frac{b^2 d e x^2}{6 c^2}-\frac{2 b^2 d e \log \left (c^2 x^2+1\right )}{3 c^4}+\frac{b^2 d e x \tan ^{-1}(c x)}{c^3}+\frac{b^2 e^2 x^4}{60 c^2}-\frac{4 b^2 e^2 x^2}{45 c^4}+\frac{23 b^2 e^2 \log \left (c^2 x^2+1\right )}{90 c^6}-\frac{b^2 e^2 x \tan ^{-1}(c x)}{3 c^5}-\frac{b^2 d^2 x \tan ^{-1}(c x)}{c} \]

[Out]

-((a*b*d^2*x)/c) + (a*b*d*e*x)/c^3 - (a*b*e^2*x)/(3*c^5) + (b^2*d*e*x^2)/(6*c^2) - (4*b^2*e^2*x^2)/(45*c^4) +
(b^2*e^2*x^4)/(60*c^2) - (b^2*d^2*x*ArcTan[c*x])/c + (b^2*d*e*x*ArcTan[c*x])/c^3 - (b^2*e^2*x*ArcTan[c*x])/(3*
c^5) - (b*d*e*x^3*(a + b*ArcTan[c*x]))/(3*c) + (b*e^2*x^3*(a + b*ArcTan[c*x]))/(9*c^3) - (b*e^2*x^5*(a + b*Arc
Tan[c*x]))/(15*c) + (d^2*(a + b*ArcTan[c*x])^2)/(2*c^2) - (d*e*(a + b*ArcTan[c*x])^2)/(2*c^4) + (e^2*(a + b*Ar
cTan[c*x])^2)/(6*c^6) + (d^2*x^2*(a + b*ArcTan[c*x])^2)/2 + (d*e*x^4*(a + b*ArcTan[c*x])^2)/2 + (e^2*x^6*(a +
b*ArcTan[c*x])^2)/6 + (b^2*d^2*Log[1 + c^2*x^2])/(2*c^2) - (2*b^2*d*e*Log[1 + c^2*x^2])/(3*c^4) + (23*b^2*e^2*
Log[1 + c^2*x^2])/(90*c^6)

________________________________________________________________________________________

Rubi [A]  time = 0.75363, antiderivative size = 380, normalized size of antiderivative = 1., number of steps used = 35, number of rules used = 8, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.381, Rules used = {4980, 4852, 4916, 4846, 260, 4884, 266, 43} \[ \frac{d^2 \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^2}+\frac{a b d e x}{c^3}-\frac{d e \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^4}+\frac{b e^2 x^3 \left (a+b \tan ^{-1}(c x)\right )}{9 c^3}-\frac{a b e^2 x}{3 c^5}+\frac{e^2 \left (a+b \tan ^{-1}(c x)\right )^2}{6 c^6}+\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{a b d^2 x}{c}+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{b d e x^3 \left (a+b \tan ^{-1}(c x)\right )}{3 c}+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{b e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )}{15 c}+\frac{b^2 d^2 \log \left (c^2 x^2+1\right )}{2 c^2}+\frac{b^2 d e x^2}{6 c^2}-\frac{2 b^2 d e \log \left (c^2 x^2+1\right )}{3 c^4}+\frac{b^2 d e x \tan ^{-1}(c x)}{c^3}+\frac{b^2 e^2 x^4}{60 c^2}-\frac{4 b^2 e^2 x^2}{45 c^4}+\frac{23 b^2 e^2 \log \left (c^2 x^2+1\right )}{90 c^6}-\frac{b^2 e^2 x \tan ^{-1}(c x)}{3 c^5}-\frac{b^2 d^2 x \tan ^{-1}(c x)}{c} \]

Antiderivative was successfully verified.

[In]

Int[x*(d + e*x^2)^2*(a + b*ArcTan[c*x])^2,x]

[Out]

-((a*b*d^2*x)/c) + (a*b*d*e*x)/c^3 - (a*b*e^2*x)/(3*c^5) + (b^2*d*e*x^2)/(6*c^2) - (4*b^2*e^2*x^2)/(45*c^4) +
(b^2*e^2*x^4)/(60*c^2) - (b^2*d^2*x*ArcTan[c*x])/c + (b^2*d*e*x*ArcTan[c*x])/c^3 - (b^2*e^2*x*ArcTan[c*x])/(3*
c^5) - (b*d*e*x^3*(a + b*ArcTan[c*x]))/(3*c) + (b*e^2*x^3*(a + b*ArcTan[c*x]))/(9*c^3) - (b*e^2*x^5*(a + b*Arc
Tan[c*x]))/(15*c) + (d^2*(a + b*ArcTan[c*x])^2)/(2*c^2) - (d*e*(a + b*ArcTan[c*x])^2)/(2*c^4) + (e^2*(a + b*Ar
cTan[c*x])^2)/(6*c^6) + (d^2*x^2*(a + b*ArcTan[c*x])^2)/2 + (d*e*x^4*(a + b*ArcTan[c*x])^2)/2 + (e^2*x^6*(a +
b*ArcTan[c*x])^2)/6 + (b^2*d^2*Log[1 + c^2*x^2])/(2*c^2) - (2*b^2*d*e*Log[1 + c^2*x^2])/(3*c^4) + (23*b^2*e^2*
Log[1 + c^2*x^2])/(90*c^6)

Rule 4980

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With
[{u = ExpandIntegrand[(a + b*ArcTan[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b,
 c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && ((EqQ[p, 1] && GtQ[q, 0]) || IntegerQ[m])

Rule 4852

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
n[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTan[c*x])^(p - 1))/(1 + c^
2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 4916

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[f^2/
e, Int[(f*x)^(m - 2)*(a + b*ArcTan[c*x])^p, x], x] - Dist[(d*f^2)/e, Int[((f*x)^(m - 2)*(a + b*ArcTan[c*x])^p)
/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]

Rule 4846

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTan[c*x])^p, x] - Dist[b*c*p, Int[
(x*(a + b*ArcTan[c*x])^(p - 1))/(1 + c^2*x^2), x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 0]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 4884

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan[c*x])^(p +
 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x \left (d+e x^2\right )^2 \left (a+b \tan ^{-1}(c x)\right )^2 \, dx &=\int \left (d^2 x \left (a+b \tan ^{-1}(c x)\right )^2+2 d e x^3 \left (a+b \tan ^{-1}(c x)\right )^2+e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )^2\right ) \, dx\\ &=d^2 \int x \left (a+b \tan ^{-1}(c x)\right )^2 \, dx+(2 d e) \int x^3 \left (a+b \tan ^{-1}(c x)\right )^2 \, dx+e^2 \int x^5 \left (a+b \tan ^{-1}(c x)\right )^2 \, dx\\ &=\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2-\left (b c d^2\right ) \int \frac{x^2 \left (a+b \tan ^{-1}(c x)\right )}{1+c^2 x^2} \, dx-(b c d e) \int \frac{x^4 \left (a+b \tan ^{-1}(c x)\right )}{1+c^2 x^2} \, dx-\frac{1}{3} \left (b c e^2\right ) \int \frac{x^6 \left (a+b \tan ^{-1}(c x)\right )}{1+c^2 x^2} \, dx\\ &=\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{\left (b d^2\right ) \int \left (a+b \tan ^{-1}(c x)\right ) \, dx}{c}+\frac{\left (b d^2\right ) \int \frac{a+b \tan ^{-1}(c x)}{1+c^2 x^2} \, dx}{c}-\frac{(b d e) \int x^2 \left (a+b \tan ^{-1}(c x)\right ) \, dx}{c}+\frac{(b d e) \int \frac{x^2 \left (a+b \tan ^{-1}(c x)\right )}{1+c^2 x^2} \, dx}{c}-\frac{\left (b e^2\right ) \int x^4 \left (a+b \tan ^{-1}(c x)\right ) \, dx}{3 c}+\frac{\left (b e^2\right ) \int \frac{x^4 \left (a+b \tan ^{-1}(c x)\right )}{1+c^2 x^2} \, dx}{3 c}\\ &=-\frac{a b d^2 x}{c}-\frac{b d e x^3 \left (a+b \tan ^{-1}(c x)\right )}{3 c}-\frac{b e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )}{15 c}+\frac{d^2 \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^2}+\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2-\frac{\left (b^2 d^2\right ) \int \tan ^{-1}(c x) \, dx}{c}+\frac{1}{3} \left (b^2 d e\right ) \int \frac{x^3}{1+c^2 x^2} \, dx+\frac{(b d e) \int \left (a+b \tan ^{-1}(c x)\right ) \, dx}{c^3}-\frac{(b d e) \int \frac{a+b \tan ^{-1}(c x)}{1+c^2 x^2} \, dx}{c^3}+\frac{1}{15} \left (b^2 e^2\right ) \int \frac{x^5}{1+c^2 x^2} \, dx+\frac{\left (b e^2\right ) \int x^2 \left (a+b \tan ^{-1}(c x)\right ) \, dx}{3 c^3}-\frac{\left (b e^2\right ) \int \frac{x^2 \left (a+b \tan ^{-1}(c x)\right )}{1+c^2 x^2} \, dx}{3 c^3}\\ &=-\frac{a b d^2 x}{c}+\frac{a b d e x}{c^3}-\frac{b^2 d^2 x \tan ^{-1}(c x)}{c}-\frac{b d e x^3 \left (a+b \tan ^{-1}(c x)\right )}{3 c}+\frac{b e^2 x^3 \left (a+b \tan ^{-1}(c x)\right )}{9 c^3}-\frac{b e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )}{15 c}+\frac{d^2 \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^2}-\frac{d e \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^4}+\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2+\left (b^2 d^2\right ) \int \frac{x}{1+c^2 x^2} \, dx+\frac{1}{6} \left (b^2 d e\right ) \operatorname{Subst}\left (\int \frac{x}{1+c^2 x} \, dx,x,x^2\right )+\frac{\left (b^2 d e\right ) \int \tan ^{-1}(c x) \, dx}{c^3}+\frac{1}{30} \left (b^2 e^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{1+c^2 x} \, dx,x,x^2\right )-\frac{\left (b e^2\right ) \int \left (a+b \tan ^{-1}(c x)\right ) \, dx}{3 c^5}+\frac{\left (b e^2\right ) \int \frac{a+b \tan ^{-1}(c x)}{1+c^2 x^2} \, dx}{3 c^5}-\frac{\left (b^2 e^2\right ) \int \frac{x^3}{1+c^2 x^2} \, dx}{9 c^2}\\ &=-\frac{a b d^2 x}{c}+\frac{a b d e x}{c^3}-\frac{a b e^2 x}{3 c^5}-\frac{b^2 d^2 x \tan ^{-1}(c x)}{c}+\frac{b^2 d e x \tan ^{-1}(c x)}{c^3}-\frac{b d e x^3 \left (a+b \tan ^{-1}(c x)\right )}{3 c}+\frac{b e^2 x^3 \left (a+b \tan ^{-1}(c x)\right )}{9 c^3}-\frac{b e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )}{15 c}+\frac{d^2 \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^2}-\frac{d e \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^4}+\frac{e^2 \left (a+b \tan ^{-1}(c x)\right )^2}{6 c^6}+\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{b^2 d^2 \log \left (1+c^2 x^2\right )}{2 c^2}+\frac{1}{6} \left (b^2 d e\right ) \operatorname{Subst}\left (\int \left (\frac{1}{c^2}-\frac{1}{c^2 \left (1+c^2 x\right )}\right ) \, dx,x,x^2\right )-\frac{\left (b^2 d e\right ) \int \frac{x}{1+c^2 x^2} \, dx}{c^2}+\frac{1}{30} \left (b^2 e^2\right ) \operatorname{Subst}\left (\int \left (-\frac{1}{c^4}+\frac{x}{c^2}+\frac{1}{c^4 \left (1+c^2 x\right )}\right ) \, dx,x,x^2\right )-\frac{\left (b^2 e^2\right ) \int \tan ^{-1}(c x) \, dx}{3 c^5}-\frac{\left (b^2 e^2\right ) \operatorname{Subst}\left (\int \frac{x}{1+c^2 x} \, dx,x,x^2\right )}{18 c^2}\\ &=-\frac{a b d^2 x}{c}+\frac{a b d e x}{c^3}-\frac{a b e^2 x}{3 c^5}+\frac{b^2 d e x^2}{6 c^2}-\frac{b^2 e^2 x^2}{30 c^4}+\frac{b^2 e^2 x^4}{60 c^2}-\frac{b^2 d^2 x \tan ^{-1}(c x)}{c}+\frac{b^2 d e x \tan ^{-1}(c x)}{c^3}-\frac{b^2 e^2 x \tan ^{-1}(c x)}{3 c^5}-\frac{b d e x^3 \left (a+b \tan ^{-1}(c x)\right )}{3 c}+\frac{b e^2 x^3 \left (a+b \tan ^{-1}(c x)\right )}{9 c^3}-\frac{b e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )}{15 c}+\frac{d^2 \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^2}-\frac{d e \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^4}+\frac{e^2 \left (a+b \tan ^{-1}(c x)\right )^2}{6 c^6}+\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{b^2 d^2 \log \left (1+c^2 x^2\right )}{2 c^2}-\frac{2 b^2 d e \log \left (1+c^2 x^2\right )}{3 c^4}+\frac{b^2 e^2 \log \left (1+c^2 x^2\right )}{30 c^6}+\frac{\left (b^2 e^2\right ) \int \frac{x}{1+c^2 x^2} \, dx}{3 c^4}-\frac{\left (b^2 e^2\right ) \operatorname{Subst}\left (\int \left (\frac{1}{c^2}-\frac{1}{c^2 \left (1+c^2 x\right )}\right ) \, dx,x,x^2\right )}{18 c^2}\\ &=-\frac{a b d^2 x}{c}+\frac{a b d e x}{c^3}-\frac{a b e^2 x}{3 c^5}+\frac{b^2 d e x^2}{6 c^2}-\frac{4 b^2 e^2 x^2}{45 c^4}+\frac{b^2 e^2 x^4}{60 c^2}-\frac{b^2 d^2 x \tan ^{-1}(c x)}{c}+\frac{b^2 d e x \tan ^{-1}(c x)}{c^3}-\frac{b^2 e^2 x \tan ^{-1}(c x)}{3 c^5}-\frac{b d e x^3 \left (a+b \tan ^{-1}(c x)\right )}{3 c}+\frac{b e^2 x^3 \left (a+b \tan ^{-1}(c x)\right )}{9 c^3}-\frac{b e^2 x^5 \left (a+b \tan ^{-1}(c x)\right )}{15 c}+\frac{d^2 \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^2}-\frac{d e \left (a+b \tan ^{-1}(c x)\right )^2}{2 c^4}+\frac{e^2 \left (a+b \tan ^{-1}(c x)\right )^2}{6 c^6}+\frac{1}{2} d^2 x^2 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{2} d e x^4 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{1}{6} e^2 x^6 \left (a+b \tan ^{-1}(c x)\right )^2+\frac{b^2 d^2 \log \left (1+c^2 x^2\right )}{2 c^2}-\frac{2 b^2 d e \log \left (1+c^2 x^2\right )}{3 c^4}+\frac{23 b^2 e^2 \log \left (1+c^2 x^2\right )}{90 c^6}\\ \end{align*}

Mathematica [A]  time = 0.315931, size = 317, normalized size = 0.83 \[ \frac{c x \left (30 a^2 c^5 x \left (3 d^2+3 d e x^2+e^2 x^4\right )-4 a b \left (3 c^4 \left (15 d^2+5 d e x^2+e^2 x^4\right )-5 c^2 e \left (9 d+e x^2\right )+15 e^2\right )+b^2 c e x \left (3 c^2 \left (10 d+e x^2\right )-16 e\right )\right )+4 b \tan ^{-1}(c x) \left (15 a \left (c^6 \left (3 d^2 x^2+3 d e x^4+e^2 x^6\right )+3 c^4 d^2-3 c^2 d e+e^2\right )-b c x \left (3 c^4 \left (15 d^2+5 d e x^2+e^2 x^4\right )-5 c^2 e \left (9 d+e x^2\right )+15 e^2\right )\right )+2 b^2 \left (45 c^4 d^2-60 c^2 d e+23 e^2\right ) \log \left (c^2 x^2+1\right )+30 b^2 \tan ^{-1}(c x)^2 \left (c^6 \left (3 d^2 x^2+3 d e x^4+e^2 x^6\right )+3 c^4 d^2-3 c^2 d e+e^2\right )}{180 c^6} \]

Antiderivative was successfully verified.

[In]

Integrate[x*(d + e*x^2)^2*(a + b*ArcTan[c*x])^2,x]

[Out]

(c*x*(30*a^2*c^5*x*(3*d^2 + 3*d*e*x^2 + e^2*x^4) + b^2*c*e*x*(-16*e + 3*c^2*(10*d + e*x^2)) - 4*a*b*(15*e^2 -
5*c^2*e*(9*d + e*x^2) + 3*c^4*(15*d^2 + 5*d*e*x^2 + e^2*x^4))) + 4*b*(-(b*c*x*(15*e^2 - 5*c^2*e*(9*d + e*x^2)
+ 3*c^4*(15*d^2 + 5*d*e*x^2 + e^2*x^4))) + 15*a*(3*c^4*d^2 - 3*c^2*d*e + e^2 + c^6*(3*d^2*x^2 + 3*d*e*x^4 + e^
2*x^6)))*ArcTan[c*x] + 30*b^2*(3*c^4*d^2 - 3*c^2*d*e + e^2 + c^6*(3*d^2*x^2 + 3*d*e*x^4 + e^2*x^6))*ArcTan[c*x
]^2 + 2*b^2*(45*c^4*d^2 - 60*c^2*d*e + 23*e^2)*Log[1 + c^2*x^2])/(180*c^6)

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 484, normalized size = 1.3 \begin{align*} -{\frac{{b}^{2}\arctan \left ( cx \right ){x}^{5}{e}^{2}}{15\,c}}+ab\arctan \left ( cx \right ){x}^{2}{d}^{2}+{\frac{{b}^{2} \left ( \arctan \left ( cx \right ) \right ) ^{2}{x}^{4}de}{2}}+{\frac{ab\arctan \left ( cx \right ){e}^{2}{x}^{6}}{3}}+{\frac{ab{x}^{3}{e}^{2}}{9\,{c}^{3}}}+{\frac{ab\arctan \left ( cx \right ){e}^{2}}{3\,{c}^{6}}}+{\frac{{b}^{2}\arctan \left ( cx \right ){x}^{3}{e}^{2}}{9\,{c}^{3}}}-{\frac{ab{x}^{5}{e}^{2}}{15\,c}}-{\frac{{b}^{2} \left ( \arctan \left ( cx \right ) \right ) ^{2}de}{2\,{c}^{4}}}+{\frac{ab\arctan \left ( cx \right ){d}^{2}}{{c}^{2}}}+{\frac{23\,{b}^{2}{e}^{2}\ln \left ({c}^{2}{x}^{2}+1 \right ) }{90\,{c}^{6}}}-{\frac{4\,{b}^{2}{e}^{2}{x}^{2}}{45\,{c}^{4}}}+{\frac{{b}^{2}{e}^{2}{x}^{4}}{60\,{c}^{2}}}+{\frac{{a}^{2}{x}^{2}{d}^{2}}{2}}+{\frac{{a}^{2}{e}^{2}{x}^{6}}{6}}-{\frac{{b}^{2}\arctan \left ( cx \right ){x}^{3}de}{3\,c}}-{\frac{ab{x}^{3}de}{3\,c}}+ab\arctan \left ( cx \right ){x}^{4}de-{\frac{ab\arctan \left ( cx \right ) de}{{c}^{4}}}+{\frac{{a}^{2}{x}^{4}de}{2}}+{\frac{{b}^{2} \left ( \arctan \left ( cx \right ) \right ) ^{2}{e}^{2}{x}^{6}}{6}}+{\frac{{b}^{2} \left ( \arctan \left ( cx \right ) \right ) ^{2}{x}^{2}{d}^{2}}{2}}+{\frac{{b}^{2} \left ( \arctan \left ( cx \right ) \right ) ^{2}{d}^{2}}{2\,{c}^{2}}}+{\frac{{b}^{2} \left ( \arctan \left ( cx \right ) \right ) ^{2}{e}^{2}}{6\,{c}^{6}}}-{\frac{ab{d}^{2}x}{c}}-{\frac{{b}^{2}{d}^{2}x\arctan \left ( cx \right ) }{c}}+{\frac{{b}^{2}{d}^{2}\ln \left ({c}^{2}{x}^{2}+1 \right ) }{2\,{c}^{2}}}-{\frac{ab{e}^{2}x}{3\,{c}^{5}}}+{\frac{{b}^{2}de{x}^{2}}{6\,{c}^{2}}}-{\frac{{b}^{2}{e}^{2}x\arctan \left ( cx \right ) }{3\,{c}^{5}}}-{\frac{2\,{b}^{2}de\ln \left ({c}^{2}{x}^{2}+1 \right ) }{3\,{c}^{4}}}+{\frac{abdex}{{c}^{3}}}+{\frac{{b}^{2}dex\arctan \left ( cx \right ) }{{c}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x^2+d)^2*(a+b*arctan(c*x))^2,x)

[Out]

-1/15/c*b^2*arctan(c*x)*x^5*e^2+a*b*arctan(c*x)*x^2*d^2+1/2*b^2*arctan(c*x)^2*x^4*d*e+1/3*a*b*arctan(c*x)*e^2*
x^6+1/9/c^3*a*b*x^3*e^2+1/3/c^6*a*b*arctan(c*x)*e^2+1/9/c^3*b^2*arctan(c*x)*x^3*e^2-1/15/c*a*b*x^5*e^2-1/2/c^4
*b^2*arctan(c*x)^2*d*e+1/c^2*a*b*arctan(c*x)*d^2+23/90*b^2*e^2*ln(c^2*x^2+1)/c^6-4/45*b^2*e^2*x^2/c^4+1/60*b^2
*e^2*x^4/c^2+1/2*a^2*x^2*d^2+1/6*a^2*e^2*x^6-1/3/c*b^2*arctan(c*x)*x^3*d*e-1/3/c*a*b*x^3*d*e+a*b*arctan(c*x)*x
^4*d*e-1/c^4*a*b*arctan(c*x)*d*e+1/2*a^2*x^4*d*e+1/6*b^2*arctan(c*x)^2*e^2*x^6+1/2*b^2*arctan(c*x)^2*x^2*d^2+1
/2/c^2*b^2*arctan(c*x)^2*d^2+1/6/c^6*b^2*arctan(c*x)^2*e^2-a*b*d^2*x/c-b^2*d^2*x*arctan(c*x)/c+1/2*b^2*d^2*ln(
c^2*x^2+1)/c^2-1/3*a*b*e^2*x/c^5+1/6*b^2*d*e*x^2/c^2-1/3*b^2*e^2*x*arctan(c*x)/c^5-2/3*b^2*d*e*ln(c^2*x^2+1)/c
^4+a*b*d*e*x/c^3+b^2*d*e*x*arctan(c*x)/c^3

________________________________________________________________________________________

Maxima [A]  time = 1.62129, size = 585, normalized size = 1.54 \begin{align*} \frac{1}{6} \, b^{2} e^{2} x^{6} \arctan \left (c x\right )^{2} + \frac{1}{6} \, a^{2} e^{2} x^{6} + \frac{1}{2} \, b^{2} d e x^{4} \arctan \left (c x\right )^{2} + \frac{1}{2} \, a^{2} d e x^{4} + \frac{1}{2} \, b^{2} d^{2} x^{2} \arctan \left (c x\right )^{2} + \frac{1}{2} \, a^{2} d^{2} x^{2} +{\left (x^{2} \arctan \left (c x\right ) - c{\left (\frac{x}{c^{2}} - \frac{\arctan \left (c x\right )}{c^{3}}\right )}\right )} a b d^{2} - \frac{1}{2} \,{\left (2 \, c{\left (\frac{x}{c^{2}} - \frac{\arctan \left (c x\right )}{c^{3}}\right )} \arctan \left (c x\right ) + \frac{\arctan \left (c x\right )^{2} - \log \left (c^{2} x^{2} + 1\right )}{c^{2}}\right )} b^{2} d^{2} + \frac{1}{3} \,{\left (3 \, x^{4} \arctan \left (c x\right ) - c{\left (\frac{c^{2} x^{3} - 3 \, x}{c^{4}} + \frac{3 \, \arctan \left (c x\right )}{c^{5}}\right )}\right )} a b d e - \frac{1}{6} \,{\left (2 \, c{\left (\frac{c^{2} x^{3} - 3 \, x}{c^{4}} + \frac{3 \, \arctan \left (c x\right )}{c^{5}}\right )} \arctan \left (c x\right ) - \frac{c^{2} x^{2} + 3 \, \arctan \left (c x\right )^{2} - 4 \, \log \left (c^{2} x^{2} + 1\right )}{c^{4}}\right )} b^{2} d e + \frac{1}{45} \,{\left (15 \, x^{6} \arctan \left (c x\right ) - c{\left (\frac{3 \, c^{4} x^{5} - 5 \, c^{2} x^{3} + 15 \, x}{c^{6}} - \frac{15 \, \arctan \left (c x\right )}{c^{7}}\right )}\right )} a b e^{2} - \frac{1}{180} \,{\left (4 \, c{\left (\frac{3 \, c^{4} x^{5} - 5 \, c^{2} x^{3} + 15 \, x}{c^{6}} - \frac{15 \, \arctan \left (c x\right )}{c^{7}}\right )} \arctan \left (c x\right ) - \frac{3 \, c^{4} x^{4} - 16 \, c^{2} x^{2} - 30 \, \arctan \left (c x\right )^{2} + 46 \, \log \left (c^{2} x^{2} + 1\right )}{c^{6}}\right )} b^{2} e^{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^2*(a+b*arctan(c*x))^2,x, algorithm="maxima")

[Out]

1/6*b^2*e^2*x^6*arctan(c*x)^2 + 1/6*a^2*e^2*x^6 + 1/2*b^2*d*e*x^4*arctan(c*x)^2 + 1/2*a^2*d*e*x^4 + 1/2*b^2*d^
2*x^2*arctan(c*x)^2 + 1/2*a^2*d^2*x^2 + (x^2*arctan(c*x) - c*(x/c^2 - arctan(c*x)/c^3))*a*b*d^2 - 1/2*(2*c*(x/
c^2 - arctan(c*x)/c^3)*arctan(c*x) + (arctan(c*x)^2 - log(c^2*x^2 + 1))/c^2)*b^2*d^2 + 1/3*(3*x^4*arctan(c*x)
- c*((c^2*x^3 - 3*x)/c^4 + 3*arctan(c*x)/c^5))*a*b*d*e - 1/6*(2*c*((c^2*x^3 - 3*x)/c^4 + 3*arctan(c*x)/c^5)*ar
ctan(c*x) - (c^2*x^2 + 3*arctan(c*x)^2 - 4*log(c^2*x^2 + 1))/c^4)*b^2*d*e + 1/45*(15*x^6*arctan(c*x) - c*((3*c
^4*x^5 - 5*c^2*x^3 + 15*x)/c^6 - 15*arctan(c*x)/c^7))*a*b*e^2 - 1/180*(4*c*((3*c^4*x^5 - 5*c^2*x^3 + 15*x)/c^6
 - 15*arctan(c*x)/c^7)*arctan(c*x) - (3*c^4*x^4 - 16*c^2*x^2 - 30*arctan(c*x)^2 + 46*log(c^2*x^2 + 1))/c^6)*b^
2*e^2

________________________________________________________________________________________

Fricas [A]  time = 2.30814, size = 894, normalized size = 2.35 \begin{align*} \frac{30 \, a^{2} c^{6} e^{2} x^{6} - 12 \, a b c^{5} e^{2} x^{5} + 3 \,{\left (30 \, a^{2} c^{6} d e + b^{2} c^{4} e^{2}\right )} x^{4} - 20 \,{\left (3 \, a b c^{5} d e - a b c^{3} e^{2}\right )} x^{3} + 2 \,{\left (45 \, a^{2} c^{6} d^{2} + 15 \, b^{2} c^{4} d e - 8 \, b^{2} c^{2} e^{2}\right )} x^{2} + 30 \,{\left (b^{2} c^{6} e^{2} x^{6} + 3 \, b^{2} c^{6} d e x^{4} + 3 \, b^{2} c^{6} d^{2} x^{2} + 3 \, b^{2} c^{4} d^{2} - 3 \, b^{2} c^{2} d e + b^{2} e^{2}\right )} \arctan \left (c x\right )^{2} - 60 \,{\left (3 \, a b c^{5} d^{2} - 3 \, a b c^{3} d e + a b c e^{2}\right )} x + 4 \,{\left (15 \, a b c^{6} e^{2} x^{6} + 45 \, a b c^{6} d e x^{4} - 3 \, b^{2} c^{5} e^{2} x^{5} + 45 \, a b c^{6} d^{2} x^{2} + 45 \, a b c^{4} d^{2} - 45 \, a b c^{2} d e + 15 \, a b e^{2} - 5 \,{\left (3 \, b^{2} c^{5} d e - b^{2} c^{3} e^{2}\right )} x^{3} - 15 \,{\left (3 \, b^{2} c^{5} d^{2} - 3 \, b^{2} c^{3} d e + b^{2} c e^{2}\right )} x\right )} \arctan \left (c x\right ) + 2 \,{\left (45 \, b^{2} c^{4} d^{2} - 60 \, b^{2} c^{2} d e + 23 \, b^{2} e^{2}\right )} \log \left (c^{2} x^{2} + 1\right )}{180 \, c^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^2*(a+b*arctan(c*x))^2,x, algorithm="fricas")

[Out]

1/180*(30*a^2*c^6*e^2*x^6 - 12*a*b*c^5*e^2*x^5 + 3*(30*a^2*c^6*d*e + b^2*c^4*e^2)*x^4 - 20*(3*a*b*c^5*d*e - a*
b*c^3*e^2)*x^3 + 2*(45*a^2*c^6*d^2 + 15*b^2*c^4*d*e - 8*b^2*c^2*e^2)*x^2 + 30*(b^2*c^6*e^2*x^6 + 3*b^2*c^6*d*e
*x^4 + 3*b^2*c^6*d^2*x^2 + 3*b^2*c^4*d^2 - 3*b^2*c^2*d*e + b^2*e^2)*arctan(c*x)^2 - 60*(3*a*b*c^5*d^2 - 3*a*b*
c^3*d*e + a*b*c*e^2)*x + 4*(15*a*b*c^6*e^2*x^6 + 45*a*b*c^6*d*e*x^4 - 3*b^2*c^5*e^2*x^5 + 45*a*b*c^6*d^2*x^2 +
 45*a*b*c^4*d^2 - 45*a*b*c^2*d*e + 15*a*b*e^2 - 5*(3*b^2*c^5*d*e - b^2*c^3*e^2)*x^3 - 15*(3*b^2*c^5*d^2 - 3*b^
2*c^3*d*e + b^2*c*e^2)*x)*arctan(c*x) + 2*(45*b^2*c^4*d^2 - 60*b^2*c^2*d*e + 23*b^2*e^2)*log(c^2*x^2 + 1))/c^6

________________________________________________________________________________________

Sympy [A]  time = 7.65463, size = 575, normalized size = 1.51 \begin{align*} \begin{cases} \frac{a^{2} d^{2} x^{2}}{2} + \frac{a^{2} d e x^{4}}{2} + \frac{a^{2} e^{2} x^{6}}{6} + a b d^{2} x^{2} \operatorname{atan}{\left (c x \right )} + a b d e x^{4} \operatorname{atan}{\left (c x \right )} + \frac{a b e^{2} x^{6} \operatorname{atan}{\left (c x \right )}}{3} - \frac{a b d^{2} x}{c} - \frac{a b d e x^{3}}{3 c} - \frac{a b e^{2} x^{5}}{15 c} + \frac{a b d^{2} \operatorname{atan}{\left (c x \right )}}{c^{2}} + \frac{a b d e x}{c^{3}} + \frac{a b e^{2} x^{3}}{9 c^{3}} - \frac{a b d e \operatorname{atan}{\left (c x \right )}}{c^{4}} - \frac{a b e^{2} x}{3 c^{5}} + \frac{a b e^{2} \operatorname{atan}{\left (c x \right )}}{3 c^{6}} + \frac{b^{2} d^{2} x^{2} \operatorname{atan}^{2}{\left (c x \right )}}{2} + \frac{b^{2} d e x^{4} \operatorname{atan}^{2}{\left (c x \right )}}{2} + \frac{b^{2} e^{2} x^{6} \operatorname{atan}^{2}{\left (c x \right )}}{6} - \frac{b^{2} d^{2} x \operatorname{atan}{\left (c x \right )}}{c} - \frac{b^{2} d e x^{3} \operatorname{atan}{\left (c x \right )}}{3 c} - \frac{b^{2} e^{2} x^{5} \operatorname{atan}{\left (c x \right )}}{15 c} + \frac{b^{2} d^{2} \log{\left (x^{2} + \frac{1}{c^{2}} \right )}}{2 c^{2}} + \frac{b^{2} d^{2} \operatorname{atan}^{2}{\left (c x \right )}}{2 c^{2}} + \frac{b^{2} d e x^{2}}{6 c^{2}} + \frac{b^{2} e^{2} x^{4}}{60 c^{2}} + \frac{b^{2} d e x \operatorname{atan}{\left (c x \right )}}{c^{3}} + \frac{b^{2} e^{2} x^{3} \operatorname{atan}{\left (c x \right )}}{9 c^{3}} - \frac{2 b^{2} d e \log{\left (x^{2} + \frac{1}{c^{2}} \right )}}{3 c^{4}} - \frac{b^{2} d e \operatorname{atan}^{2}{\left (c x \right )}}{2 c^{4}} - \frac{4 b^{2} e^{2} x^{2}}{45 c^{4}} - \frac{b^{2} e^{2} x \operatorname{atan}{\left (c x \right )}}{3 c^{5}} + \frac{23 b^{2} e^{2} \log{\left (x^{2} + \frac{1}{c^{2}} \right )}}{90 c^{6}} + \frac{b^{2} e^{2} \operatorname{atan}^{2}{\left (c x \right )}}{6 c^{6}} & \text{for}\: c \neq 0 \\a^{2} \left (\frac{d^{2} x^{2}}{2} + \frac{d e x^{4}}{2} + \frac{e^{2} x^{6}}{6}\right ) & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x**2+d)**2*(a+b*atan(c*x))**2,x)

[Out]

Piecewise((a**2*d**2*x**2/2 + a**2*d*e*x**4/2 + a**2*e**2*x**6/6 + a*b*d**2*x**2*atan(c*x) + a*b*d*e*x**4*atan
(c*x) + a*b*e**2*x**6*atan(c*x)/3 - a*b*d**2*x/c - a*b*d*e*x**3/(3*c) - a*b*e**2*x**5/(15*c) + a*b*d**2*atan(c
*x)/c**2 + a*b*d*e*x/c**3 + a*b*e**2*x**3/(9*c**3) - a*b*d*e*atan(c*x)/c**4 - a*b*e**2*x/(3*c**5) + a*b*e**2*a
tan(c*x)/(3*c**6) + b**2*d**2*x**2*atan(c*x)**2/2 + b**2*d*e*x**4*atan(c*x)**2/2 + b**2*e**2*x**6*atan(c*x)**2
/6 - b**2*d**2*x*atan(c*x)/c - b**2*d*e*x**3*atan(c*x)/(3*c) - b**2*e**2*x**5*atan(c*x)/(15*c) + b**2*d**2*log
(x**2 + c**(-2))/(2*c**2) + b**2*d**2*atan(c*x)**2/(2*c**2) + b**2*d*e*x**2/(6*c**2) + b**2*e**2*x**4/(60*c**2
) + b**2*d*e*x*atan(c*x)/c**3 + b**2*e**2*x**3*atan(c*x)/(9*c**3) - 2*b**2*d*e*log(x**2 + c**(-2))/(3*c**4) -
b**2*d*e*atan(c*x)**2/(2*c**4) - 4*b**2*e**2*x**2/(45*c**4) - b**2*e**2*x*atan(c*x)/(3*c**5) + 23*b**2*e**2*lo
g(x**2 + c**(-2))/(90*c**6) + b**2*e**2*atan(c*x)**2/(6*c**6), Ne(c, 0)), (a**2*(d**2*x**2/2 + d*e*x**4/2 + e*
*2*x**6/6), True))

________________________________________________________________________________________

Giac [A]  time = 1.62472, size = 716, normalized size = 1.88 \begin{align*} \frac{30 \, b^{2} c^{6} x^{6} \arctan \left (c x\right )^{2} e^{2} + 60 \, a b c^{6} x^{6} \arctan \left (c x\right ) e^{2} + 90 \, b^{2} c^{6} d x^{4} \arctan \left (c x\right )^{2} e + 30 \, a^{2} c^{6} x^{6} e^{2} + 180 \, a b c^{6} d x^{4} \arctan \left (c x\right ) e + 90 \, b^{2} c^{6} d^{2} x^{2} \arctan \left (c x\right )^{2} - 12 \, b^{2} c^{5} x^{5} \arctan \left (c x\right ) e^{2} + 90 \, a^{2} c^{6} d x^{4} e + 180 \, a b c^{6} d^{2} x^{2} \arctan \left (c x\right ) - 12 \, a b c^{5} x^{5} e^{2} - 60 \, b^{2} c^{5} d x^{3} \arctan \left (c x\right ) e + 90 \, a^{2} c^{6} d^{2} x^{2} - 60 \, a b c^{5} d x^{3} e - 180 \, b^{2} c^{5} d^{2} x \arctan \left (c x\right ) + 3 \, b^{2} c^{4} x^{4} e^{2} - 180 \, \pi a b c^{4} d^{2} \mathrm{sgn}\left (c\right ) \mathrm{sgn}\left (x\right ) - 180 \, a b c^{5} d^{2} x + 90 \, b^{2} c^{4} d^{2} \arctan \left (c x\right )^{2} + 20 \, b^{2} c^{3} x^{3} \arctan \left (c x\right ) e^{2} + 30 \, b^{2} c^{4} d x^{2} e + 180 \, a b c^{4} d^{2} \arctan \left (c x\right ) + 20 \, a b c^{3} x^{3} e^{2} + 180 \, b^{2} c^{3} d x \arctan \left (c x\right ) e + 90 \, b^{2} c^{4} d^{2} \log \left (c^{2} x^{2} + 1\right ) + 180 \, a b c^{3} d x e - 90 \, b^{2} c^{2} d \arctan \left (c x\right )^{2} e - 16 \, b^{2} c^{2} x^{2} e^{2} - 180 \, a b c^{2} d \arctan \left (c x\right ) e - 120 \, b^{2} c^{2} d e \log \left (c^{2} x^{2} + 1\right ) - 60 \, b^{2} c x \arctan \left (c x\right ) e^{2} - 60 \, \pi a b e^{2} \mathrm{sgn}\left (c\right ) \mathrm{sgn}\left (x\right ) - 60 \, a b c x e^{2} + 30 \, b^{2} \arctan \left (c x\right )^{2} e^{2} + 60 \, a b \arctan \left (c x\right ) e^{2} + 46 \, b^{2} e^{2} \log \left (c^{2} x^{2} + 1\right )}{180 \, c^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^2*(a+b*arctan(c*x))^2,x, algorithm="giac")

[Out]

1/180*(30*b^2*c^6*x^6*arctan(c*x)^2*e^2 + 60*a*b*c^6*x^6*arctan(c*x)*e^2 + 90*b^2*c^6*d*x^4*arctan(c*x)^2*e +
30*a^2*c^6*x^6*e^2 + 180*a*b*c^6*d*x^4*arctan(c*x)*e + 90*b^2*c^6*d^2*x^2*arctan(c*x)^2 - 12*b^2*c^5*x^5*arcta
n(c*x)*e^2 + 90*a^2*c^6*d*x^4*e + 180*a*b*c^6*d^2*x^2*arctan(c*x) - 12*a*b*c^5*x^5*e^2 - 60*b^2*c^5*d*x^3*arct
an(c*x)*e + 90*a^2*c^6*d^2*x^2 - 60*a*b*c^5*d*x^3*e - 180*b^2*c^5*d^2*x*arctan(c*x) + 3*b^2*c^4*x^4*e^2 - 180*
pi*a*b*c^4*d^2*sgn(c)*sgn(x) - 180*a*b*c^5*d^2*x + 90*b^2*c^4*d^2*arctan(c*x)^2 + 20*b^2*c^3*x^3*arctan(c*x)*e
^2 + 30*b^2*c^4*d*x^2*e + 180*a*b*c^4*d^2*arctan(c*x) + 20*a*b*c^3*x^3*e^2 + 180*b^2*c^3*d*x*arctan(c*x)*e + 9
0*b^2*c^4*d^2*log(c^2*x^2 + 1) + 180*a*b*c^3*d*x*e - 90*b^2*c^2*d*arctan(c*x)^2*e - 16*b^2*c^2*x^2*e^2 - 180*a
*b*c^2*d*arctan(c*x)*e - 120*b^2*c^2*d*e*log(c^2*x^2 + 1) - 60*b^2*c*x*arctan(c*x)*e^2 - 60*pi*a*b*e^2*sgn(c)*
sgn(x) - 60*a*b*c*x*e^2 + 30*b^2*arctan(c*x)^2*e^2 + 60*a*b*arctan(c*x)*e^2 + 46*b^2*e^2*log(c^2*x^2 + 1))/c^6